MATH 245 F16, Exam 1 Solutions

1. Carefully define the following terms: irreducible, Division Algorithm theorem, (logical) equivalence, Conditional Interpretation semantic theorem
Let $n \in \mathbb{Z}$. We call n irreducible if it is not zero, not a unit, and not reducible. The Division Algorithm theorem states: Let $a, b \in \mathbb{Z}$ with $b \geq 1$. Then there are unique $q, r \in \mathbb{Z}$ with $a=b q+r$ and $0 \leq r<b$. Propositions p, q are (logically) equivalent if they always have the same truth value. The Conditional Interpretation theorem states that for any propositions p, q, we have $p \rightarrow q \equiv q \vee \neg p$.
2. Carefully define the following terms: converse, Disjunctive Syllogism semantic theorem, predicate, counterexample
The converse of conditional proposition $p \rightarrow q$ is the proposition $q \rightarrow p$. The Disjunctive Syllogism semantic theorem states that, for any propositions p, q, we have $p \vee q, \neg p \vdash q$. A predicate is a collection of propositions, indexed by one or more free variables, each drawn from some domain. A counterexample is a particular domain value for some universally quantified variable, which makes the associated predicate (and hence entire proposition) false.
3. Let $a \in \mathbb{Z}$. Suppose that a is odd. Prove that a^{2} is odd.

Since a is odd, there is some integer n with $a=2 n+1$. We have $a^{2}=(2 n+1)^{2}=$ $4 n^{2}+4 n+1=2\left(2 n^{2}+2 n\right)+1$. Since $2 n^{2}+2 n \in \mathbb{Z}, a^{2}$ is odd.
4. Let $a, b, c \in \mathbb{Z}$. Suppose that $a \mid b$ and $b \mid c$. Prove that $a \mid c$.

Since $a \mid b$, there is some $n \in \mathbb{Z}$ with $b=n a$. Since $b \mid c$, there is some $m \in \mathbb{Z}$ with $c=m b$. Combining, $c=m(n a)=(m n) a$. Since $m n \in \mathbb{Z}, a \mid c$.
5. Simplify $\neg((p \rightarrow q) \rightarrow((\neg r) \vee p))$ as much as possible. (i.e. where only basic propositions are negated)

Step 1: Apply conditional interpretation twice to get $\neg(\neg(q \vee \neg p) \vee((\neg r) \vee p))$.
Step 2: Apply De Morgan's law and double negation: $(q \vee \neg p) \wedge \neg((\neg r) \vee p)$.
Step 3: Apply De Morgan's law and double negation: $(q \vee \neg p) \wedge(r \wedge \neg p)$.
Optional: By addition, $\neg p \vdash q \vee \neg p$, so simply $r \wedge \neg p$.
6. Simplify $\neg\left(\exists x \in \mathbb{R} \forall y \in \mathbb{R} \exists z \in \mathbb{R}, x \leq z<y^{2}\right)$ as much as possible. (i.e. where nothing is negated)
Step 1: $\forall x \in \mathbb{R} \exists y \in \mathbb{R} \forall z \in \mathbb{R}, \neg\left(x \leq z<y^{2}\right)$. Note that $x \leq z<y^{2} \equiv(x \leq z) \wedge(z<$ y^{2}).
Step 2: Apply De Morgan's Law: $\forall x \in \mathbb{R} \exists y \in \mathbb{R} \forall z \in \mathbb{R},(x>z) \vee\left(z \geq y^{2}\right)$.
Note: There is no way to write $(x>z) \vee\left(z \geq y^{2}\right)$ as a double inequality, you must use \checkmark or similar.
7. Prove or disprove: $\forall x \in \mathbb{R},\left\lfloor x^{2}\right\rfloor \geq x$.

The statement is false, and we need a counterexample for the disproof. One such is $x^{\star}=\frac{1}{2}$. We have $\left\lfloor\left(x^{\star}\right)^{2}\right\rfloor=\left\lfloor\frac{1}{4}\right\rfloor=0<\frac{1}{2}=x^{\star}$.
8. Use semantic theorems to prove the modus tollens semantic theorem.

The modus tollens theorem states: $p \rightarrow q, \neg q \vdash \neg p$. We will prove this directly; hence we take as hypotheses $p \rightarrow q, \neg q$. Using conditional interpretation on $p \rightarrow q$, we conclude $q \vee \neg p$. Using disjunctive syllogism on $q \vee \neg p$ together with $\neg q$, we get $\neg p$.
9. Use a truth table to prove that $p \leftrightarrow q \equiv(p \wedge q) \vee((\neg p) \wedge(\neg q))$.

p	q	$p \leftrightarrow q$	$p \wedge q$	$\neg p$	$\neg q$	$(\neg p) \wedge \neg q$	$(p \wedge q) \vee((\neg p) \wedge(\neg q))$
T	T	T	T	F	F	F	T
T	F	F	F	F	T	F	F
F	T	F	F	T	F	F	F
F	F	T	F	T	T	T	T

The theorem follows because the third and eighth column agree.
10. Use semantic theorems to prove that $p \leftrightarrow q \vdash(p \wedge q) \vee((\neg p) \wedge(\neg q))$.

We will use a direct proof. By a theorem from the text ${ }^{1}$ we have $p \leftrightarrow q \vdash(p \rightarrow q) \wedge(q \rightarrow$ $p)$. By conditional interpretation twice, this yields $(\underbrace{q \vee \neg p)}) \wedge(p \vee \neg q)$. By distributivity, this yields $((\underbrace{q \vee \neg p}) \wedge p) \vee((\underbrace{q \vee \neg p}) \wedge \neg q)$. By distributivity twice more, this yields $((q \wedge p) \vee((\neg p) \wedge p)) \vee((q \wedge \neg q) \vee((\neg p) \wedge \neg q))$. But by another theorem from the text ${ }^{2}$, we know that $q \wedge \neg q \equiv F \equiv(\neg p) \wedge p$. This yields $((q \wedge p) \vee F) \vee(F \vee((\neg p) \wedge \neg q))$. By disjunctive syllogism twice, we get $(q \wedge p) \vee((\neg p) \wedge \neg q)$. Lastly, by symmetry of \wedge, we get $(p \wedge q) \vee((\neg p) \wedge(\neg q))$.

[^0]
[^0]: ${ }^{1}$ called Theorem 2.17, and also Exercise 2.14.
 ${ }^{2}$ called Theorem 2.10, and also Exercise 2.3.

