
MATH 245 F16, Exam 1 Solutions

1. Carefully define the following terms: irreducible, Division Algorithm theorem, (logical)
equivalence, Conditional Interpretation semantic theorem

Let n ∈ Z. We call n irreducible if it is not zero, not a unit, and not reducible. The
Division Algorithm theorem states: Let a, b ∈ Z with b ≥ 1. Then there are unique
q, r ∈ Z with a = bq + r and 0 ≤ r < b. Propositions p, q are (logically) equivalent if
they always have the same truth value. The Conditional Interpretation theorem states
that for any propositions p, q, we have p→ q ≡ q ∨ ¬p.

2. Carefully define the following terms: converse, Disjunctive Syllogism semantic theorem,
predicate, counterexample

The converse of conditional proposition p → q is the proposition q → p. The Dis-
junctive Syllogism semantic theorem states that, for any propositions p, q, we have
p ∨ q,¬p ` q. A predicate is a collection of propositions, indexed by one or more free
variables, each drawn from some domain. A counterexample is a particular domain
value for some universally quantified variable, which makes the associated predicate
(and hence entire proposition) false.

3. Let a ∈ Z. Suppose that a is odd. Prove that a2 is odd.

Since a is odd, there is some integer n with a = 2n + 1. We have a2 = (2n + 1)2 =
4n2 + 4n + 1 = 2(2n2 + 2n) + 1. Since 2n2 + 2n ∈ Z, a2 is odd.

4. Let a, b, c ∈ Z. Suppose that a|b and b|c. Prove that a|c.

Since a|b, there is some n ∈ Z with b = na. Since b|c, there is some m ∈ Z with
c = mb. Combining, c = m(na) = (mn)a. Since mn ∈ Z, a|c.

5. Simplify ¬((p→ q)→ ((¬r) ∨ p)) as much as possible. (i.e. where only basic proposi-
tions are negated)

Step 1: Apply conditional interpretation twice to get ¬(¬(q ∨ ¬p) ∨ ((¬r) ∨ p)).
Step 2: Apply De Morgan’s law and double negation: (q ∨ ¬p) ∧ ¬((¬r) ∨ p).
Step 3: Apply De Morgan’s law and double negation: (q ∨ ¬p) ∧ (r ∧ ¬p).
Optional: By addition, ¬p ` q ∨ ¬p, so simply r ∧ ¬p.

6. Simplify ¬(∃x ∈ R ∀y ∈ R ∃z ∈ R, x ≤ z < y2) as much as possible. (i.e. where
nothing is negated)

Step 1: ∀x ∈ R ∃y ∈ R ∀z ∈ R,¬(x ≤ z < y2). Note that x ≤ z < y2 ≡ (x ≤ z)∧ (z <
y2).
Step 2: Apply De Morgan’s Law: ∀x ∈ R ∃y ∈ R ∀z ∈ R, (x > z) ∨ (z ≥ y2).

Note: There is no way to write (x > z)∨ (z ≥ y2) as a double inequality, you must use
∨ or similar.



7. Prove or disprove: ∀x ∈ R, bx2c ≥ x.

The statement is false, and we need a counterexample for the disproof. One such is
x? = 1

2
. We have b(x?)2c = b1

4
c = 0 < 1

2
= x?.

8. Use semantic theorems to prove the modus tollens semantic theorem.

The modus tollens theorem states: p→ q,¬q ` ¬p. We will prove this directly; hence
we take as hypotheses p → q,¬q. Using conditional interpretation on p → q, we
conclude q ∨ ¬p. Using disjunctive syllogism on q ∨ ¬p together with ¬q, we get ¬p.

9. Use a truth table to prove that p↔ q ≡ (p ∧ q) ∨ ((¬p) ∧ (¬q)).

p q p↔ q p ∧ q ¬p ¬q (¬p) ∧ ¬q (p ∧ q) ∨ ((¬p) ∧ (¬q))
T T T T F F F T
T F F F F T F F
F T F F T F F F
F F T F T T T T

The theorem follows because the third and eighth column agree.

10. Use semantic theorems to prove that p↔ q ` (p ∧ q) ∨ ((¬p) ∧ (¬q)).

We will use a direct proof. By a theorem from the text1 we have p↔ q ` (p→ q)∧(q →
p). By conditional interpretation twice, this yields (q ∨ ¬p︸ ︷︷ ︸)∧(p∨¬q). By distributivity,

this yields ((q ∨ ¬p︸ ︷︷ ︸) ∧ p) ∨ ((q ∨ ¬p︸ ︷︷ ︸) ∧ ¬q). By distributivity twice more, this yields

((q∧p)∨ ((¬p)∧p))∨ ((q∧¬q)∨ ((¬p)∧¬q)). But by another theorem from the text2,
we know that q ∧¬q ≡ F ≡ (¬p)∧ p. This yields ((q ∧ p)∨F )∨ (F ∨ ((¬p)∧¬q)). By
disjunctive syllogism twice, we get (q ∧ p)∨ ((¬p)∧¬q). Lastly, by symmetry of ∧, we
get (p ∧ q) ∨ ((¬p) ∧ (¬q)).

1called Theorem 2.17, and also Exercise 2.14.
2called Theorem 2.10, and also Exercise 2.3.


