MATH 245 F16, Exam 1 Solutions

1. Carefully define the following terms: irreducible, Division Algorithm theorem, (logical) equivalence, Conditional Interpretation semantic theorem

Let $n \in \mathbb{Z}$. We call n irreducible if it is not zero, not a unit, and not reducible. The Division Algorithm theorem states: Let $a, b \in \mathbb{Z}$ with $b \ge 1$. Then there are unique $q, r \in \mathbb{Z}$ with a = bq + r and $0 \le r < b$. Propositions p, q are (logically) equivalent if they always have the same truth value. The Conditional Interpretation theorem states that for any propositions p, q, we have $p \to q \equiv q \lor \neg p$.

2. Carefully define the following terms: converse, Disjunctive Syllogism semantic theorem, predicate, counterexample

The converse of conditional proposition $p \to q$ is the proposition $q \to p$. The Disjunctive Syllogism semantic theorem states that, for any propositions p, q, we have $p \lor q, \neg p \vdash q$. A predicate is a collection of propositions, indexed by one or more free variables, each drawn from some domain. A counterexample is a particular domain value for some universally quantified variable, which makes the associated predicate (and hence entire proposition) false.

3. Let $a \in \mathbb{Z}$. Suppose that a is odd. Prove that a^2 is odd.

Since *a* is odd, there is some integer *n* with a = 2n + 1. We have $a^2 = (2n + 1)^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1$. Since $2n^2 + 2n \in \mathbb{Z}$, a^2 is odd.

4. Let $a, b, c \in \mathbb{Z}$. Suppose that a|b and b|c. Prove that a|c.

Since a|b, there is some $n \in \mathbb{Z}$ with b = na. Since b|c, there is some $m \in \mathbb{Z}$ with c = mb. Combining, c = m(na) = (mn)a. Since $mn \in \mathbb{Z}$, a|c.

5. Simplify $\neg((p \to q) \to ((\neg r) \lor p))$ as much as possible. (i.e. where only basic propositions are negated)

Step 1: Apply conditional interpretation twice to get $\neg(\neg(q \lor \neg p) \lor ((\neg r) \lor p))$. Step 2: Apply De Morgan's law and double negation: $(q \lor \neg p) \land \neg((\neg r) \lor p)$. Step 3: Apply De Morgan's law and double negation: $(q \lor \neg p) \land (r \land \neg p)$. Optional: By addition, $\neg p \vdash q \lor \neg p$, so simply $r \land \neg p$.

6. Simplify $\neg(\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \exists z \in \mathbb{R}, x \leq z < y^2)$ as much as possible. (i.e. where nothing is negated)

Step 1: $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ \forall z \in \mathbb{R}, \neg (x \leq z < y^2)$. Note that $x \leq z < y^2 \equiv (x \leq z) \land (z < y^2)$.

Step 2: Apply De Morgan's Law: $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ \forall z \in \mathbb{R}, (x > z) \lor (z \ge y^2).$

Note: There is no way to write $(x > z) \lor (z \ge y^2)$ as a double inequality, you must use \lor or similar.

7. Prove or disprove: $\forall x \in \mathbb{R}, \lfloor x^2 \rfloor \ge x$.

The statement is false, and we need a counterexample for the disproof. One such is $x^* = \frac{1}{2}$. We have $\lfloor (x^*)^2 \rfloor = \lfloor \frac{1}{4} \rfloor = 0 < \frac{1}{2} = x^*$.

8. Use semantic theorems to prove the modus tollens semantic theorem.

The modus tollens theorem states: $p \to q, \neg q \vdash \neg p$. We will prove this directly; hence we take as hypotheses $p \to q, \neg q$. Using conditional interpretation on $p \to q$, we conclude $q \lor \neg p$. Using disjunctive syllogism on $q \lor \neg p$ together with $\neg q$, we get $\neg p$.

9. Use a truth table to prove that $p \leftrightarrow q \equiv (p \land q) \lor ((\neg p) \land (\neg q))$.

p	q	$p \leftrightarrow q$	$p \wedge q$	$\neg p$	$\neg q$	$(\neg p) \land \neg q$	$(p \land q) \lor ((\neg p) \land (\neg q))$
Т	Т	Т	Т	F	F	\mathbf{F}	Т
Т	\mathbf{F}	F	F	\mathbf{F}	Т	\mathbf{F}	F
\mathbf{F}	Т	F	F	Т	\mathbf{F}	\mathbf{F}	F
F	F	Т	\mathbf{F}	Т	Т	Т	Т

The theorem follows because the third and eighth column agree.

10. Use semantic theorems to prove that $p \leftrightarrow q \vdash (p \land q) \lor ((\neg p) \land (\neg q))$.

We will use a direct proof. By a theorem from the text¹ we have $p \leftrightarrow q \vdash (p \rightarrow q) \land (q \rightarrow p)$. By conditional interpretation twice, this yields $(q \lor \neg p) \land (p \lor \neg q)$. By distributivity, this yields $((q \lor \neg p) \land p) \lor ((q \lor \neg p) \land \neg q)$. By distributivity twice more, this yields $((q \land p) \lor ((\neg p) \land p)) \lor ((q \land \neg q) \lor ((\neg p) \land \neg q))$. But by another theorem from the text², we know that $q \land \neg q \equiv F \equiv (\neg p) \land p$. This yields $((q \land p) \lor F) \lor (F \lor ((\neg p) \land \neg q))$. By disjunctive syllogism twice, we get $(q \land p) \lor ((\neg p) \land \neg q)$. Lastly, by symmetry of \land , we get $(p \land q) \lor ((\neg p) \land (\neg q))$.

¹ called Theorem 2.17, and also Exercise 2.14.

 $^{^{2}}$ called Theorem 2.10, and also Exercise 2.3.